![]() | ||
In knot theory, a branch of mathematics, a knot or link
For example:
Fibered knots and links arise naturally, but not exclusively, in complex algebraic geometry. For instance, each singular point of a complex plane curve can be described topologically as the cone on a fibered knot or link called the link of the singularity. The trefoil knot is the link of the cusp singularity
A knot is fibered if and only if it is the binding of some open book decomposition of
Knots that are not fibered
The Alexander polynomial of a fibered knot is monic, i.e. the coefficients of the highest and lowest powers of t are plus or minus 1. Examples of knots with nonmonic Alexander polynomials abound, for example the twist knots have Alexander polynomials qt − (2q + 1) + qt−1, where q is the number of half-twists. In particular the Stevedore's knot is not fibered.