In mathematics, especially in an area of abstract algebra known as representation theory, a faithful representation ρ of a group G on a vector space V is a linear representation in which different elements g of G are represented by distinct linear mappings ρ(g).
In more abstract language, this means that the group homomorphism
ρ: G → GL(V)is injective (or one-to-one).
Caveat: While representations of G over a field K are de facto the same as
Properties
A representation V of a finite group G over an algebraically closed field K of characteristic zero is faithful (as a representation) if and only if every irreducible representation of G occurs as a subrepresentation of SnV (the n-th symmetric power of the representation V) for a sufficiently high n. Also, V is faithful (as a representation) if and only if every irreducible representation of G occurs as a subrepresentation of
(the n-th tensor power of the representation V) for a sufficiently high n.