Mission type Mars rover Mission duration ≥ 6 months Launch mass 310 kg (680 lb) | Operator ESA · RKA Manufacturer Astrium · Airbus | |
![]() | ||
Website exploration.esa.int/mars/48088-mission-overview/ |
The ExoMars rover is a planned robotic Mars rover, part of the international ExoMars programme led by the European Space Agency and the Russian Roscosmos State Corporation.
Contents
- History
- Navigation
- Payload
- Imaging system
- Core drill
- Scientific instruments
- Pasteur instrument suite
- External
- Russian instruments
- De scoped instruments
- Landing site selection
- References
The plan calls for a Russian launch vehicle, an ESA carrier module and a Russian lander that will deploy the rover to Mars' surface, scheduled to launch in July 2020. Once safely landed, the solar powered rover would begin a six-month (218-sol) mission to search for the existence of past or present life on Mars. The ExoMars Trace Gas Orbiter, launched in 2016, will operate as the rover's data-relay satellite.
History
The rover is an autonomous six-wheeled terrain vehicle once designed to weigh up to 295 kg (650 lb), approximately 60% more than NASA's 2004 Mars Exploration Rovers Spirit and Opportunity, but about one third that of NASA's Curiosity rover launched in 2011.
In February 2012, following NASA's withdrawal, the ESA went back to previous designs for a smaller rover, once calculated to be 207 kg (456 lb). Instrumentation will consist of the exobiology laboratory suite, known as "Pasteur analytical laboratory" to look for signs of biomolecules or biosignatures from past or present life. Among other instruments, the rover will also carry a 2-metre (6 ft 7 in) sub-surface drill to pull up samples for its on-board laboratory.
The lead builder of the ExoMars rover, the British division of Airbus Defence and Space, began procuring critical components in March 2014. In December 2014, ESA member states approved the funding for the rover, to be sent on the second launch in 2018, but insufficient funds had already started to threaten a launch delay until 2020. The wheels and suspension system are paid by the Canadian Space Agency and are being manufactured by MDA Corporation in Canada.
As of March 2013, the spacecraft was scheduled to launch in 2018 with a Mars landing in early 2019. Delays in European and Russian industrial activities and deliveries of scientific payloads, however, forced the launch to be pushed back. In May 2016, ESA announced that the mission had been moved to the next available launch window of July 2020. However, an ESA ministerial meeting in December 2016 will consider mission issues including €300 million in ExoMars funding and lessons learned from the ExoMars 2016 mission. One concern is that the Schiaparelli module crashed during its Mars atmospheric entry, and this landing system is being produced in near duplication for the ExoMars 2020 lander.
Navigation
The ExoMars mission requires the rover to be capable of driving 70 m (230 ft) across the Martian terrain per sol to enable it to meet its science objectives. The rover is designed to operate at least seven months and drive 4 km (2.5 mi), after landing.
Since the rover communicates with the ground controllers via the ExoMars Trace Gas Orbiter, and the orbiter only passes over the rover approximately twice per sol, the ground controllers will not be able to actively guide the rover across the surface. The ExoMars Rover is therefore designed to navigate autonomously across the Martian surface. A pair of stereo cameras allow the rover to build up a 3D map of the terrain, which the navigation software then uses to assess the terrain around the rover so that it avoids obstacles and finds an efficient route to the ground controller specified destination.
On 27 March 2014, a "Mars Yard" was opened at Airbus Defence and Space in Stevenage, UK, to facilitate the development and testing of the rover's autonomous navigation system. The yard is 30 by 13 m (98 by 43 ft) and contains 300 tonnes (330 short tons; 300 long tons) of sand and rocks designed to mimic the terrain of the Martian environment.
Payload
The scientific payload is as follows:
Imaging system
The PanCam has been designed to perform digital terrain mapping for the rover and to search for morphological signatures of past biological activity preserved on the texture of surface rocks. The PanCam assembly includes two wide angle cameras for multi-spectral stereoscopic panoramic imaging, and a high resolution camera for high-resolution colour imaging. The PanCam will also support the scientific measurements of other instruments by taking high-resolution images of locations that are difficult to access, such as craters or rock walls, and by supporting the selection of the best sites to carry out exobiology studies. Stained glass will be used to prevent ultraviolet radiation from changing image colors. This will allow for true color images of the surface of Mars.
Core drill
The present environment on Mars is exceedingly hostile for the widespread proliferation of surface life: it is too cold and dry and receives large doses of solar UV radiation as well as cosmic radiation. Notwithstanding these hazards, basic microorganisms or their ancient remains may be found in protected places underground or within rock cracks and inclusions. The ExoMars core drill is designed to acquire soil samples down to a maximum depth of 2 metres (6 ft 7 in) in a variety of soil types. The drill will acquire a core sample 1 cm (0.4 in) in diameter by 3 cm (1.2 in) in length, extract it and deliver it to the inlet port of the Rover Payload Module, where the sample will be distributed, processed and analyzed. The ExoMars drill embeds the Mars Multispectral Imager for Subsurface Studies (Ma-Miss) which is a miniaturised infrared spectrometer devoted to the borehole exploration. The system will complete experiment cycles and at least two vertical surveys down to 2 metres (with four sample acquisitions each). This means that a minimum number of 17 samples shall be acquired and delivered by the drill for subsequent analysis.
Scientific instruments
The science package in the ExoMars rover will hold a variety of instruments collectively called Pasteur suite; these instruments will study the environment for habitability, and possible past or present biosignatures on Mars. These instruments are placed internally and used to study collected samples:
Pasteur instrument suite
External
Russian instruments
De-scoped instruments
The proposed payload has changed several times. The last major change was after the program switched from the larger rover concept back to the previous 300 kg (660 lb) rover design in 2012.
Landing site selection
After a review by an ESA-appointed panel, a short list of four sites was formally recommended in October 2014 for further detailed analysis:
On 21 October 2015, Oxia Planum was chosen as the preferred landing site for the ExoMars rover assuming a 2018 launch. Since the launch was delayed to 2020, Aram Dorsum and Mawrth Vallis are also be considered.
After the ExoMars 2020 surface platform lands, it will deploy ramps to deliver the ExoMars rover to the surface. The platform will remain stationary and will start a one-year mission to investigate the surface environment at the landing site.