In fluid mechanics, dewetting is one of the processes that can occur at a solid–liquid or liquid–liquid interface. Generally, dewetting describes the rupture of a thin liquid film on the substrate (either a liquid itself, or a solid) and the formation of droplets. The opposite process—spreading of a liquid on a substrate—is called wetting. The factor determining the spontaneous spreading and dewetting for a drop of oil placed on a liquid substrate (water here) with ambient gas, is the so-called spreading coefficient
where
When
Spreading and dewetting are important processes for many applications, including adhesion, lubrication, painting, printing, and protective coating. For most applications, dewetting is an unwanted process, because it destroys the applied thin film.
In most dewetting studies a thin polymer film is spun onto a substrate. Even in the case of
When starting from a continuous film, an irregular pattern of droplets is formed. The droplet size and droplet spacing may vary over several orders of magnitude, since the dewetting starts from randomly formed holes in the film. There is no spatial correlation between the dry patches that develop. These dry patches grow and the material is accumulated in the rim surrounding the growing hole. In the case where the initially homogeneous film is thin (in the range of 100 nm (4×10−6 in)), a polygon network of connected strings of material is formed, like a Voronoi pattern of polygons. These strings then can break up into droplets, a process which is known as the Plateau-Rayleigh instability. At other film thicknesses, other complicated patterns of droplets on the substrate can be observed, which stem from a fingering instability of the growing rim around the dry patch.
Dewetting can be inhibited or prevented by photocrosslinking the thin film prior to annealing, or by incorporating nanoparticle additives into the film.
Surfactants can have a significant effect on the spreading coefficient. When a surfactant is added, it's amphiphilic properties cause it to be more energetically favorable to migrate to the surface, decreasing the interfacial tension and thus increasing the spreading coefficient (i.e. making S more positive). As more surfactant molecules are absorbed into the interface, the free energy of the system decreases in tandem to the surface tension decreasing, eventually causing the system to become completely wetting.
In biology, by analogy with the physics of liquid dewetting, the process of tunnel formation through endothelial cells has been referred to as cellular dewetting.