|  | ||
| Parameters λ        >        0              {\displaystyle \lambda >0}   (fixed mean)                    α        ,        β        >        0              {\displaystyle \alpha ,\beta >0}   (parameters of variable mean) Support k        ∈        {        0        ,        1        ,        2        ,        …        }              {\displaystyle k\in \{0,1,2,\ldots \}} pmf ∑                      i            =            0                                k                                                              Γ              (              α              +              i              )                              β                                  i                                                            λ                                  k                  −                  i                                                            e                                  −                  λ                                                                    Γ              (              α              )              i              !              (              1              +              β                              )                                  α                  +                  i                                            (              k              −              i              )              !                                            {\displaystyle \sum _{i=0}^{k}{\frac {\Gamma (\alpha +i)\beta ^{i}\lambda ^{k-i}e^{-\lambda }}{\Gamma (\alpha )i!(1+\beta )^{\alpha +i}(k-i)!}}} CDF ∑                      j            =            0                                k                                    ∑                      i            =            0                                j                                                              Γ              (              α              +              i              )                              β                                  i                                                            λ                                  j                  −                  i                                                            e                                  −                  λ                                                                    Γ              (              α              )              i              !              (              1              +              β                              )                                  α                  +                  i                                            (              j              −              i              )              !                                            {\displaystyle \sum _{j=0}^{k}\sum _{i=0}^{j}{\frac {\Gamma (\alpha +i)\beta ^{i}\lambda ^{j-i}e^{-\lambda }}{\Gamma (\alpha )i!(1+\beta )^{\alpha +i}(j-i)!}}} Mean λ        +        α        β              {\displaystyle \lambda +\alpha \beta } Mode {                                                            z                  ,                  z                  +                  1                                                  {                  z                  ∈                                      Z                                    }                  :                                    z                  =                  (                  α                  −                  1                  )                  β                  +                  λ                                                                              ⌊                  z                  ⌋                                                                                            otherwise                                                                                                                            {\displaystyle {\begin{cases}z,z+1&\{z\in \mathbb {Z} \}:\;z=(\alpha -1)\beta +\lambda \\\lfloor z\rfloor &{\textrm {otherwise}}\end{cases}}} | ||
The Delaporte distribution is a discrete probability distribution that has received attention in actuarial science. It can be defined using the convolution of a negative binomial distribution with a Poisson distribution. Just as the negative binomial distribution can be viewed as a Poisson distribution where the mean parameter is itself a random variable with a gamma distribution, the Delaporte distribution can be viewed as a compound distribution based on a Poisson distribution, where there are two components to the mean parameter: a fixed component, which has the                     
Properties
The skewness of the Delaporte distribution is:
                              
The excess kurtosis of the distribution is:
                              
