Darboux's theorem is a theorem in real analysis, named after Jean Gaston Darboux. It states that all functions that result from the differentiation of other functions have the intermediate value property: the image of an interval is also an interval.
Contents
When f is continuously differentiable (f in C1([a,b])), this is a consequence of the intermediate value theorem. But even when f′ is not continuous, Darboux's theorem places a severe restriction on what it can be.
Darboux's theorem
Let                     
Proof
If                     
Since                     
Another proof can be given by combining the mean value theorem and the intermediate value theorem.
In fact, let's take                     
Thus, for                     
Furthermore,                     
From the Mean Value Theorem, there exists a point                     
Darboux function
A Darboux function is a real-valued function f which has the "intermediate value property": for any two values a and b in the domain of f, and any y between f(a) and f(b), there is some c between a and b with f(c) = y. By the intermediate value theorem, every continuous function on a real interval is a Darboux function. Darboux's contribution was to show that there are discontinuous Darboux functions.
Every discontinuity of a Darboux function is essential, that is, at any point of discontinuity, at least one of the left hand and right hand limits does not exist.
An example of a Darboux function that is discontinuous at one point, is the function
By Darboux's theorem, the derivative of any differentiable function is a Darboux function. In particular, the derivative of the function                     
An example of a Darboux function that is nowhere continuous is the Conway base 13 function.
Darboux functions are a quite general class of functions. It turns out that any real-valued function f on the real line can be written as the sum of two Darboux functions. This implies in particular that the class of Darboux functions is not closed under addition.
A strongly Darboux function is one for which the image of every (non-empty) open interval is the whole real line. Such functions exist and are Darboux but nowhere continuous.
