Neha Patil (Editor)

DBm

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit

dBm (sometimes dBmW or decibel-milliwatts) is an abbreviation for the power ratio in decibels (dB) of the measured power referenced to one milliwatt (mW). It is used in radio, microwave and fiber-optical networks as a convenient measure of absolute power because of its capability to express both very large and very small values in a short form. Compare dBW, which is referenced to one watt (1000 mW).

Since it is referenced to the watt, it is an absolute unit, used when measuring absolute power. By comparison, the decibel (dB) is a dimensionless unit, used for quantifying the ratio between two values, such as signal-to-noise ratio.

In audio and telephony, dBm is typically referenced relative to a 600-ohm impedance, while in radio-frequency work dBm is typically referenced relative to a 50-ohm impedance.

Unit conversions

A power level of 0 dBm corresponds to a power of 1 milliwatt. A 10 dB increase in level is equivalent to 10 times the power. A 3 dB increase in level is approximately equivalent to doubling the power, which means that a level of 3 dBm corresponds roughly to a power of 2 mW. For each 3 dB decrease in level, the power is reduced by about one half, making −3 dBm correspond to a power of about 0.5 mW.

To express an arbitrary power P in mW as x in dBm, or vice versa, the following equivalent expressions may be used:

x = 10 log 10 P 1   mW , P = 1   mW 10 x 10 ,

idem with P in watts

x = 30 + 10 log 10 P 1   W , P = 1   W 10 x 30 10 ,

Below is a table summarizing useful cases:

The signal intensity (power per unit area) can be converted to received signal power by multiplying by the square of the wavelength and dividing by 4π (see Free-space path loss).

In United States Department of Defense practice, unweighted measurement is normally understood, applicable to a certain bandwidth, which must be stated or implied.

In European practice, psophometric weighting may be, as indicated by context, equivalent to dBm0p, which is preferred.

In audio, 0 dBm often corresponds to approximately 0.775 volts, since 0.775 V dissipates 1 mW in a 600 Ω load. dBu measures against this reference voltage without the 600 Ω restriction. Conversely, for RF situations with a 50 Ω load, 0 dBm corresponds to approximately 0.224 volts, since 0.224 V dissipates 1 mW in a 50 Ω load.

The dBm is not a part of the International System of Units and therefore is discouraged from use in documents or systems that adhere to SI units (the corresponding SI unit is the watt). However, the straight decibel (dB), being a unitless ratio of two numbers, is perfectly acceptable.

Expression in dBm is typically used for optical and electrical power measurements, not for other types of power (such as thermal). A listing by power levels in watts is available that includes a variety of examples not necessarily related to electrical or optical power.

The dBm was first proposed as an industry standard in the paper "A New Standard Volume Indicator and Reference Level".

References

DBm Wikipedia