Girish Mahajan (Editor)

Cubic threefold

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit

In algebraic geometry, a cubic threefold is a hypersurface of degree 3 in 4-dimensional projective space. Cubic threefolds are all unirational, but Clemens & Griffiths (1972) used intermediate Jacobians to show that non-singular cubic threefolds are not rational. The space of lines on a non-singular cubic 3-fold is a Fano surface.

References

Cubic threefold Wikipedia


Similar Topics