![]() | ||
In probability theory, the coupon collector's problem describes the "collect all coupons and win" contests. It asks the following question: Suppose that there is an urn of n different coupons, from which coupons are being collected, equally likely, with replacement. What is the probability that more than t sample trials are needed to collect all n coupons? An alternative statement is: Given n coupons, how many coupons do you expect you need to draw with replacement before having drawn each coupon at least once? The mathematical analysis of the problem reveals that the expected number of trials needed grows as
Contents
Understanding the problem
The key to solving the problem is understanding that it takes very little time to collect the first few coupons. On the other hand, it takes a long time to collect the last few coupons. In fact, for 50 coupons, it takes on average 50 trials to collect the very last coupon after the other 49 coupons have been collected. This is why the expected time to collect all coupons is much longer than 50. The idea now is to split the total time into 50 intervals where the expected time can be calculated.
Answer
The following table gives the expected number of tries to get sets of 1 to 100 coupons.
Calculating the expectation
Let T be the time to collect all n coupons, and let ti be the time to collect the i-th coupon after i − 1 coupons have been collected. Think of T and ti as random variables. Observe that the probability of collecting a new coupon is pi = (n − (i − 1))/n. Therefore, ti has geometric distribution with expectation 1/pi. By the linearity of expectations we have:
Here Hn is the n-th harmonic number. Using the asymptotics of the harmonic numbers, we obtain:
where
Now one can use the Markov inequality to bound the desired probability:
Calculating the variance
Using the independence of random variables ti, we obtain:
The
Now one can use the Chebyshev inequality to bound the desired probability:
Tail estimates
A different upper bound can be derived from the following observation. Let
Thus, for