Rahul Sharma (Editor)

Compound of four octahedra with rotational freedom

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit
Compound of four octahedra with rotational freedom

This uniform polyhedron compound is a symmetric arrangement of 4 octahedra, considered as triangular antiprisms. It can be constructed by superimposing four identical octahedra, and then rotating each by an equal angle θ about a separate axis passing through the centres of two opposite octahedral faces, in such a way as to preserve pyritohedral symmetry.

Superimposing this compound with a second copy, in which the octahedra have been rotated by the same angle θ in the opposite direction, yields the compound of eight octahedra with rotational freedom.

When θ=0, all four octahedra coincide. When θ is 60 degrees, the more symmetric compound of four octahedra (without rotational freedom) arises. In another notable case (pictured), for a certain intermediate value of θ in which 24 of the triangles form coplanar pairs, the compound assumes the form of the compound of five octahedra with one of the octahedra removed.

References

Compound of four octahedra with rotational freedom Wikipedia


Similar Topics