Girish Mahajan (Editor)

Cochran's Q test

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit

In statistics, in the analysis of two-way randomized block designs where the response variable can take only two possible outcomes (coded as 0 and 1), Cochran's Q test is a non-parametric statistical test to verify whether k treatments have identical effects. It is named for William Gemmell Cochran. Cochran's Q test should not be confused with Cochran's C test, which is a variance outlier test. Put in less technical terms, requires that there only be a binary response (success/failure or 1/0) and that there be 2 or more matched groups (groups of the same size). The test assesses whether the proportion of successes is the same between groups. Often used to assess if different observers of the same phenomenon have consistent results amongst themselves (interobserver variability).

Contents

Background

Cochran's Q test assumes that there are k > 2 experimental treatments and that the observations are arranged in b blocks; that is,

Description

Cochran's Q test is

H0: The treatments are equally effective.Ha: There is a difference in effectiveness among treatments.

The Cochran's Q test statistic is

T = k ( k 1 ) j = 1 k ( X j N k ) 2 i = 1 b X i ( k X i )

where

k is the number of treatmentsX• j is the column total for the jth treatmentb is the number of blocksXi • is the row total for the ith blockN is the grand total

Critical region

For significance level α, the critical region is

T > χ 1 α , k 1 2

where Χ21 − α,k − 1 is the (1 − α)-quantile of the chi-squared distribution with k − 1 degrees of freedom. The null hypothesis is rejected if the test statistic is in the critical region. If the Cochran test rejects the null hypothesis of equally effective treatments, pairwise multiple comparisons can be made by applying Cochran's Q test on the two treatments of interest..

Assumptions

Cochran's Q test is based on the following assumptions:

  1. A large sample approximation; in particular, it assumes that b is "large".
  2. The blocks were randomly selected from the population of all possible blocks.
  3. The outcomes of the treatments can be coded as binary responses (i.e., a "0" or "1") in a way that is common to all treatments within each block.
  • When using this kind of design for a response that is not binary but rather ordinal or continuous, one instead uses the Friedman test or Durbin tests.
  • The case where there are exactly two treatments is equivalent to McNemar's test, which is itself equivalent to a two-tailed sign test.
  • References

    Cochran's Q test Wikipedia


    Similar Topics