In probability theory, Chernoff's distribution, named after Herman Chernoff, is the probability distribution of the random variable
where W is a "two-sided" Wiener process (or two-sided "Brownian motion") satisfying W(0) = 0. If
then V(0, c) has density
where gc has Fourier transform given by
and where Ai is the Airy function. Thus fc is symmetric about 0 and the density ƒZ = ƒ1. Groeneboom (1989) shows that
where