Harman Patil (Editor)

Brownian meander

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit

In the mathematical theory of probability, Brownian meander W + = { W t + , t [ 0 , 1 ] } is a continuous non-homogeneous Markov process defined as follows:

Let W = { W t , t 0 } be a standard one-dimensional Brownian motion, and τ := sup { t [ 0 , 1 ] : W t = 0 } , i.e. the last time before t = 1 when W visits { 0 } . Then

W t + := 1 1 τ | W τ + t ( 1 τ ) | , t [ 0 , 1 ] .

The transition density p ( s , x , t , y ) d y := P ( W t + d y W s + = x ) of Brownian meander is described as follows:

For 0 < s < t 1 and x , y > 0 , and writing

ϕ t ( x ) := exp { x 2 / ( 2 t ) } 2 π t and Φ t ( x , y ) := x y ϕ t ( w ) d w ,

we have

p ( s , x , t , y ) d y := P ( W t + d y W s + = x ) = ( ϕ t s ( y x ) ϕ t s ( y + x ) ) Φ 1 t ( 0 , y ) Φ 1 s ( 0 , x ) d y

and

p ( 0 , 0 , t , y ) d y := P ( W t + d y ) = 2 2 π y t ϕ t ( y ) Φ 1 t ( 0 , y ) d y .

In particular,

P ( W 1 + d y ) = y exp { y 2 / 2 } d y , y > 0 ,

i.e. W 1 + has the Rayleigh distribution with parameter 1, the same distribution as 2 e , where e is an exponential random variable with parameter 1.

References

Brownian meander Wikipedia


Similar Topics