| Support x        ≥        1              {\displaystyle x\geq 1} PDF (                      [                          (              1              +                                                                    2                    b                    log                                        x                                    a                                            )                                      (              1              +              a              +              2              b              log                            x              )                        ]                    −                                                    2                b                            a                                )                          x                      −                          (              2              +              a              +              b              log                            x              )                                            {\displaystyle \left(\left[\left(1+{\frac {2b\log x}{a}}\right)\left(1+a+2b\log x\right)\right]-{\frac {2b}{a}}\right)x^{-\left(2+a+b\log x\right)}} CDF 1        −                  (          1          +                                                    2                b                            a                                log                    x          )                          x                      −                          (              a              +              1              +              b              log                            x              )                                            {\displaystyle 1-\left(1+{\frac {2b}{a}}\log x\right)x^{-\left(a+1+b\log x\right)}} Mean 1        +                                            1              a                                            {\displaystyle 1+{\tfrac {1}{a}}} Variance −                                                b                                            +              a                              e                                                                            (                      a                      −                      1                                              )                                                  2                                                                                                            4                      b                                                                                                                    π                                                                                            erfc                                                            (                                                                            a                      −                      1                                                              2                                                                        b                                                                                                                    )                                                                    a                                  2                                                                              b                                                                          {\displaystyle {\frac {-{\sqrt {b}}+ae^{\frac {(a-1)^{2}}{4b}}{\sqrt {\pi }}\;{\textrm {erfc}}\left({\frac {a-1}{2{\sqrt {b}}}}\right)}{a^{2}{\sqrt {b}}}}} | ||
The Benktander type I distribution is one of two distributions introduced by Gunnar Benktander (1970) to model heavy-tailed losses commonly found in non-life/casualty actuarial science, using various forms of mean excess functions (Benktander & Segerdahl 1960). The distribution of the first type is "close" to the lognormal distribution (Kleiber & Kotz 2003).
References
Benktander type I distribution Wikipedia(Text) CC BY-SA
