![]() | ||
Similar The Compendious Book on, Introduction to Analysis of the Infi, Ars Magna, Euclid's Elements, Almagest |
Arithmetica
Arithmetica (Greek: Ἀριθμητικά) is an Ancient Greek text on mathematics written by the mathematician Diophantus in the 3rd century AD. It is a collection of 130 algebraic problems giving numerical solutions of determinate equations (those with a unique solution) and indeterminate equations.
Equations in the book are called Diophantine equations. The method for solving these equations is known as Diophantine analysis. Most of the Arithmetica problems lead to quadratic equations. It was these equations which inspired Pierre de Fermat to propose Fermat's Last Theorem, scrawled in the margins of Fermat's copy of Arithmetica, which states that the equation
In Book 3, Diophantus solves problems of finding values which make two linear expressions simultaneously into squares or cubes. In book 4, he finds rational powers between given numbers. He also noticed that numbers of the form
Arithmetica was originally written in thirteen books, but the Greek manuscripts that survived to the present contain no more than six books. In 1968, Fuat Sezgin found four previously unknown books of Arithmetica at the shrine of Imam Rezā in the holy Islamic city of Mashhad in northeastern Iran. The four books are thought to have been translated from Greek to Arabic by Qusta ibn Luqa (820–912). Norbert Schappacher has written:
[The four missing books] resurfaced around 1971 in the Astan Quds Library in Meshed (Iran) in a copy from 1198 AD. It was not catalogued under the name of Diophantus (but under that of Qust¸a ibn Luqa) because the librarian was apparently not able to read the main line of the cover page where Diophantus’s name appears in geometric Kufi calligraphy.
Arithmetica became known to mathematicians in the Islamic world in the tenth century when Abu'l-Wefa translated it into Arabic.