In geometry, a 10-demicube or demidekeract is a uniform 10-polytope, constructed from the 10-cube with alternated vertices truncated. It is part of a dimensionally infinite family of uniform polytopes called demihypercubes.
E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as HM10 for a ten-dimensional half measure polytope.
Coxeter named this polytope as 171 from its Coxeter diagram, with a ring on one of the 1-length branches, and Schläfli symbol
Cartesian coordinates
Cartesian coordinates for the vertices of a demidekeract centered at the origin are alternate halves of the dekeract:
(±1,±1,±1,±1,±1,±1,±1,±1,±1,±1)with an odd number of plus signs.